Quantum mechanics Phys635
Final Exam Jan. $23^{\text {rd }} 2021$

1. The Hamiltonian operator for a two-level system is given by:

$$
H=a(|1><1|-|2><2|+|1><2|+|2><1|)
$$

where a is a number with the dimension of energy. Find the energy eigenvalues and the corresponding energy eigenkets
2. Suppose that a hydrogen atom is exposed to a uniform electric field, $\vec{\varepsilon}$, and a parallel, uniform magnetic field, \vec{B}. Consider the first excited energy level, corresponding to $\mathrm{n}=2$. Ignore spin
(a) Show that in general the level is split into four nondegenerate energy levels.
(b) For what values of ε and B are there instead only three levels, and what are the degeneracies of these levels?
(c) For what values of ε and B are there only two levels, and what are the degeneracies of these levels?
3. A three dimensional harmonic oscillator hamiltonian can be written in the following way:

$$
\hat{H}=\frac{-\hbar^{2}}{2 m} \nabla^{2}+\frac{1}{2} m\left(\omega_{x}^{2} X^{2}+\omega_{y}^{2} Y^{2}+\omega_{z}^{2} Z^{2}\right)
$$

The Hamiltonian is in cartesian coordinates, its basis is characterized by 3 quantum numbers $\mid n_{x} n_{y} n_{z}>$ if $\omega_{x}=\omega_{y}=\omega_{z}$, then it will become an isotropic oscillator and can be solved in spherical coordinates, and its basis can be written as $\left|N_{l j m_{j}}\right\rangle$, where $N=n_{x}+n_{y}+n_{z}, L=N, N-2, N-4, \ldots .0$ or 1
a spin- $1 / 2$ particle is placed in this 3D-oscillator.Now lets do the following:
(a) If the particle is subjected to a perturbation $H_{1}=\mu \vec{\sigma} \cdot \vec{r}$, where σ_{x}, σ_{y}, and σ_{z} are the Pauli spin matrices. Find the expectation value of $x \sigma_{x}$ in first order perturbation theory for the ground state.
(b) If $\omega_{x}=\omega_{y}=\omega_{0}\left(1+\frac{1}{3} \epsilon\right)$ and $\omega_{z}=\omega_{0}\left(1-\frac{2}{3} \epsilon\right)$. Find the energy and wave-function correction up to first order for the first excited state. Comment on the linear combination obtained for the wave-function correction. Do not use cartesian representation
(c) If $\omega_{x}=\omega_{0}\left(1-\frac{2}{3} \epsilon \cos \left(\gamma+120^{\circ}\right)\right), \omega_{y}=\omega_{0}\left(1-\frac{2}{3} \epsilon \cos \left(\gamma-120^{\circ}\right)\right)$ and $\omega_{z}=\omega_{0}\left(1-\frac{2}{3} \epsilon \cos (\gamma)\right)$. Find the energy and wave-function correction up to first order for the first excited state. Comment on the linear combination obtained for the wave-function correction. Do not use cartesian representation
4. For a spin- $1 / 2$ particle, is it possible to have a state χ such that the expectation value of the three component of the spin operator to be zero. If yes, then find the state χ. If no, justify your answer.
5. Let $J=J_{1}+J_{2}$, If $J_{1}=1$ and J_{2} can be either an integer or half-integer. Then the vector $\mid J M>$ can be written as:

$$
|J M>=A| 11 J_{2} M-1>+B\left|10 J_{2} M>+C\right| 1-1 J_{2} M+1>
$$

Find a general expression for A, B and C
Note: You can ignore any integrals and just rename them, if their value does not effect the results.

