1. The Hamiltonian operator for a two-level system is given by:

$$H = a(|1 > < 1| - |2 > < 2| + |1 > < 2| + |2 > < 1|)$$

where a is a number with the dimension of energy. Find the energy eigenvalues and the corresponding energy eigenkets

- 2. Suppose that a hydrogen atom is exposed to a uniform electric field, $\vec{\varepsilon}$, and a parallel, uniform magnetic field, \vec{B} . Consider the first excited energy level, corresponding to n = 2. Ignore spin
 - (a) Show that in general the level is split into four nondegenerate energy levels.
 - (b) For what values of ε and B are there instead only three levels, and what are the degeneracies of these levels?
 - (c) For what values of ε and B are there only two levels, and what are the degeneracies of these levels?
- 3. A three dimensional harmonic oscillator hamiltonian can be written in the following way:

$$\hat{H} = \frac{-\hbar^2}{2m} \nabla^2 + \frac{1}{2} m (\omega_x^2 X^2 + \omega_y^2 Y^2 + \omega_z^2 Z^2)$$

The Hamiltonian is in cartesian coordinates, its basis is characterized by 3 quantum numbers $|n_x n_y n_z \rangle$ if $\omega_x = \omega_y = \omega_z$, then it will become an isotropic oscillator and can be solved in spherical coordinates, and its basis can be written as $|Nljm_j \rangle$, where $N = n_x + n_y + n_z$, L = N, N - 2, N - 4, ..., 0or1

a spin-1/2 particle is placed in this 3D-oscillator.Now lets do the following:

- (a) If the particle is subjected to a perturbation $H_1 = \mu \vec{\sigma} \cdot \vec{r}$, where σ_x, σ_y , and σ_z are the Pauli spin matrices. Find the expectation value of $x\sigma_x$ in first order perturbation theory for the ground state.
- (b) If $\omega_x = \omega_y = \omega_0(1 + \frac{1}{3}\epsilon)$ and $\omega_z = \omega_0(1 \frac{2}{3}\epsilon)$. Find the energy and wave-function correction up to first order for the first excited state. Comment on the linear combination obtained for the wave-function correction. Do not use cartesian representation
- (c) If $\omega_x = \omega_0 (1 \frac{2}{3}\epsilon \cos(\gamma + 120^\circ))$, $\omega_y = \omega_0 (1 \frac{2}{3}\epsilon \cos(\gamma 120^\circ))$ and $\omega_z = \omega_0 (1 \frac{2}{3}\epsilon \cos(\gamma))$. Find the energy and wave-function correction up to first order for the first excited state. Comment on the linear combination obtained for the wave-function correction. Do not use cartesian representation
- 4. For a spin-1/2 particle, is it possible to have a state χ such that the expectation value of the three component of the spin operator to be zero. If yes, then find the state χ . If no, justify your answer.
- 5. Let $J = J_1 + J_2$, If $J_1 = 1$ and J_2 can be either an integer or half-integer. Then the vector $|JM\rangle$ can be written as:

$$|JM\rangle = A|11J_2M - 1\rangle + B|10J_2M\rangle + C|1 - 1J_2M + 1\rangle$$

Find a general expression for A, B and C

Note: You can ignore any integrals and just rename them, if their value does not effect the results.